Effects of Short Photoperiod on Sleep and Carbohydrate Consumption in Diurnal Grass Rats

Shelby McCahon¹, Anusha Shankar², Kyle Callegari¹, and Cory Williams¹,²

¹ Department of Biology and Wildlife, University of Alaska Fairbanks; ² Institute of Arctic Biology, University of Alaska Fairbanks

Contact: smccahon2@alaska.edu

Background

- Seasonal Affective Disorder (SAD) is a significant mental health issue, particularly among Alaskan women [1]
- Mice and rats are the most prevalent rodent models for biomedical research; however, because they are nocturnal, they may be poor models for SAD [2]
- Grass rats (Arvicanthis niloticus) have emerged as a potentially useful diurnal model for SAD, as they exhibit depressive-like behaviors under short photoperiods [3,4]

Specific Aims

- Measure sleep, activity, and sucrose consumption in response to shortened photoperiod in a diurnal rodent model, the Nile grass rat (Arvicanthis niloticus)
- Determine how well this species’ responses to short photoperiod parallel those of humans diagnosed with SAD

Methods

- Animals were either maintained on a neutral photoperiod (PP) (n=23, 12L:12D), or transferred onto a short PP (n=22; 4L:20D)
- Half of the animals in each PP group were given access to a second water bottle containing 8% sucrose solution; the other half were given a second water bottle
- We monitored sleep-wake behaviors using piezoelectric sheets

Four Groups:
- Neutral PP no sugar
- Neutral PP high sugar
- Short PP no sugar
- Short PP high sugar

Results

- **Figure 2.** Proportion of the 0% (pure water) and 8% sugar solution consumed by grass rats, relative to water in their original water bottle.

- **Figure 3.** Mass change of grass rats in each of the four treatment groups.

- **Figure 4.** Percentage hourly sleep (± SE) of grass rats in both photoperiod treatments.

- **Figure 5.** Mean hourly sleep bout duration of grass rats was not affected by photoperiod or by sugar treatment (none = water, high = 8% sucrose solution).

Findings

- Grass rats with access to high sucrose solution consumed this preferentially over water, but sucrose consumption was not affected by photoperiod (Fig. 2)
- Neutral photoperiod animals gained significantly more weight than animals exposed to short photoperiods, but weight gain was not affected by access to sugar (Fig. 3)
- Patterns of activity and sleep were disrupted under short photoperiods (Fig 1 & Fig 4), but sleep bout duration was unaffected (Fig 5)
- Most grass rats had fatty livers with microvesicular and/or macrovesicular steatosis (data not shown), though this was not clearly influenced by PP or access to sugar

Conclusion

Short photoperiods disrupted patterns of activity and sleep in grass rats. However, while some humans that suffer from SAD exhibit carbohydrate craving and mass gain, a similar response to short PP does not appear to be present in the grass rat model.

Acknowledgements

We would like to thank the UAF Animal Resources Center Staff for their help with animal care throughout the duration of the study. Financial support for this project was provided by the Biomedical Learning and Student Training (BLaST) program and the Alaska INBRE program.

Literature Cited